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ABSTPACT 

In the two-dimensional steady nonlinear problem of a planing plate, two 

distinct limiting flow regimes occur:  In one, the usual planing problem, a 

jet (or spray) is thrown forward approximately parallel to the plate, whereas 

in the other there is a flow over the plate in the downstream direction and no 

fluid is thrown forward.  The latter is equivalent to the case of a hydrofoil 

under the free surface with an infinitely long cavity at atmospheric pressure. 

If the plate has a lar^e fixed angle of attack, there is a gradual transition 

from the hydrofoil flow to the true planing flow as speed is increases and/or 

load is decreased.  However, xf the angle of attack is small, the transition 

is relatively abrupt. Furthermore, for small angle of attack, either limiting 

type of flow can be analyzed on the basis of a linearized mathematical model, 

although the transition is intrinsically nonlinear. 

In order to study the instability, the planing plate is assumed to oscil- 

late sinusoidally in heave at a prescribed frequency, and the pertinent 

linearized problem is solved. Only the high-speed, lightly-loaded condition is 

considered, with the jet thrown forward.  It is assumed that the effective loca- 

tion of the leading edge of the wetted portion oscillates fore and aft; the 

problem is equivalent to that of an airfoil with variable chord length.  It is 

necessary to solve for the location of the leading edge by finding the time- 

dependent elevation of the water ahead of the plate.  Then the lift on the 

planing plate is computed; it depends only on the reduced frequency parameter, 

and the damping is negative whenever this parameter has a value less than a 

critical value.  This suggests that the flow is always unstable.  However, it 

is found that the value of the frequency parameter for zero damping agrees 

fairly well with the value observed in experiments under actual conditions of 

spontaneous oscillation. 

It is concluded that oscillation cannot occur untiJ the speed is high 

enough that the flow has changed from a hydrofoil-like flow to a planing type 

of flow.  After this transition has occurred, the flow is invariably unstable, 

and oscillation occurs at that frequency at which the damping coefficient just 

becomes negative.  Unfortunately, the speed at which transition occurs cannot 

- iii - 

IQJftffatämi:^*--' ■■"* 



- IV - 

yet be predicted, because the steady-motion problem is here treated in the 

classical manner, in which gravity is not considered; the steady solution is 

not unique. Also, no convincing arguments have yet been found to explain 

the observation that oscillation apparently occurs at the frequency at which 

the damping just becomes negative, rather than at some higher frequency at 

which damping would be more negative and the flow more unstable. 

: 
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INTRODUCTION 

Mottard (1965) reported some observations of a planing instability that 

appeared to be similar to flutter, but which involved just one mechanical 

degree of freedom (heave). He tov;ed a large-aspect-ratio planing surface in 

such a way that it was free to heave but not to pitch. In a series of careful 

experiments, he found that there was a clearly defined critical speed at 

which heave oscillations occurred spontaneously. For a given geometry and a 

given load, the motion was stable for speeds less than the critical speed. 

It has been known since the famous work of Wagner (1932) that the flow 

under a planing surface at small angle of attack is generally similar to that 

below an airfoil in an infinite fluid. The occurrence of win~ flutter nor- 

mally requires that two vibrational degrees of freedom be involved, for 

otherwise the hydrodynamic force provides positive damping, and a spontaneous 

oscillation cannot develop. One might expect the same requirement to apply to 

the occurrence of instability of a planing surface as in the airfoil case. 

However, Mottard checked carefully in his experiments to determine that no 

pitching motion occurred, or, at least, that pitching motion had no effect on 

the phenomenon that he was observing.  His planing surface underwent a spon- 

taneous oscillation in heave alone. 

Mottard suggested that there was effectively a second degree of freedom 

because of the presence of the free surface. Ahead of the planing surface, 

the free surface oscillates at the same frequency as the planing surface 

itself but generally with a phase shift. Thus the location of the leading 

edge of the planing surface varies for two reasons:  (1) the planing-surface 

immersion varies in time, and (2) the free-sarface elevation just ahead of 

the planing surface varies. As we shall see, Mottard's  hypothesis correctly 

explains the possibility of instability. We shall show too that the existence 

of a critical speed is related to Mottard*s hypothesis, but the connection is 

not so straightforward as the flutter analory might suggest. 

Several years ago, Ogilvie (1969) tried to predict the conditions for 

instability by carrying out an analysis in which the planing surface was 
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treated as a heaving airfoil of variable chord. The instantaneous effective 

position of the leading edge was an unknown of the problem. He sought a for- 

mula for lift, presuming that there would be some definite speed at which 

that component of force in phase with heave velocity would become positive, 

indicating the onset of instability. But it did not work out that way. The 

lift depended just on the reduced frequency, 

where 

v « wH/2U , 

u) * radian frequency of oscillation, 

A - mean effective chord length, 

U B forward speed. 

The reduced frequency does indeed have a critical value, according to this 

analysis: For v > 0.213 , the damping is positive, and, for v < 0.213 , 

the damping is negative. But, at any given speed, U , there is an entire 

range of frequencies, w , at which an oscillation might occur with negative 

damping.  The concept of a "flutter speed" is thereby lost. 

Notwithstanding this discouraging result, we tried to estimate the 

value of v for the conditions in Mottard's experiments under which the 

instability occurred. Obtaining this estimate was not easy, because Mottard 

had not measured the effective chord length. However, using some fairly 

well-established semi-empirical relations given by Shuford (1958), Shen 

showed that, when instability occurred, v was rather close to the critical 

value,  0.213 . This is demonstrated in Figure 1, where the points represent 

values derived from Mottard's report. The agreement is closest for the cases 

of largest aspect ratio.  But in all cases the agreement is good enovigh that 

one is inclined to believe that the flutter concept is not all wrong. 

Apparently, when instability does occur, the two-dimensional theory 

(without gravity) predicts approximately the correct frequency of the spon- 

taneous oscillation. But the theory cannot be used to predict when insta- 

bility actually will occur. There must exist an entirely different mechanism 

that inhibits instability at speeds below a critical value. 

^tfia^^^zzm^rii^zm ftriras.-.w. siokäM 
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When we discovered this situation, we thought that the stabilizing 

mechanism must be related either to the three-dimensionality of the flow or 

to the presence of gravity effects. We had observed that the predicted value 

of the critical reduced frequency was most in error for the low-aspect-ratio 

cases, which suggested the failure of the two-dimensional theory. On the 

other hand, we could reason that instability might be inhibited below a cer- 

tain frequency,    00 , rather than below a certain speed,    U . Since the analy- 

sis by Ogilvie (1969) was deficient for low frequency oscillation, because of 

the neglect of gravity effects, it might be essential to include the latter 

in order properly to predict the onset of instability. 

In either case, it was necessary to study more closely the steady-motion 

problem before trying to formulate and solve a more accurate oscillation 

problem. Rispin (1966) and Wu (1967) had recently shown how to treat the 2-D 

planing problem with gravity effects included. We could find no hint in 

their analyses of the elusive inhibiting mechanism that we sought, and the 

notorious difficulty of adapting the hcdograph method (which they had used) 

to time-dependent problems did not encourage us to pursue that approach. So 

we decided to investigate the case of a planing surface with finite (if 

large) aspect ratio. The results were published by Shen & Ogilvie (1972). 

In the j^rocess of carrying out these investigations, we found out quite 

accidentally that there was a third possible explanation, namely, that cer- 

tain nonlinear effects prevent instability under some conditions. This 

appears to be a reversal of the usual role of nonlinearity in stability 

analyses: Frequently one predicts the onset of instability by means of a 

linearized mathematical model, knowing that the subsequent growth of the 

unstable motion will be drastically modified by nonlinear properties of the 

system.  Here we are suggesting that nonlinear behavior in the steady flow 

sometimes makes the prediction of instability by a linear analysis invalid. 

The basic argument is simple.  If a planing plate starts up from rest 

carrying a given load (supported initially by some external means), it will 

be completely wetted on the under side at firot; it must use all of the 

available area for developing the required hydrodynamic lift.  The stagnation 

«HJrrtr.r ■ 
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point will lie very close to the forward edge of the plate.  However, as 

speed increases, more and more lift is generated, and so the plate rises up 

in the water until the forward part is not fully wetted. With increasing 

speed, the effective lifting area reduces more and more. Eventually, the 

plate planes on a small strip just ahead of the trailing edge, and the actual 

length of the plate is of no consequence hydrodynamically; it could just as 

well extend infinitely far forward. The important length scale in the prob- 

lem then depends on the effective chord, which we shall generally take as the 

distance between trailing edge and stagnation point. This is the configura- 

tion investigated by Ogilvie (1969).  When a heave oscillation is superposed 

on such a steady motion, the position of the effective leading edge — and 

thus the effective chord — is free to er cillate too; this oscillation is 

characterized by a negative damping force.  However, at the lower speeds, the 

stagnation point clings to the forward t;dge of the plate, and so the mobility 

of the effective leading edge — which gives the extra degree of freedom — 

does not exist.  Thus, an oscillation under such conditions does not involve 

a negative damping force, and there is no instability. 

In the next section, we consider the nonlinear steady-motion problem for 

a planing plate.  This is the classical problem of Green (1936), which is 

also described by Milne-Thomson (1960).  The most important consequence for 

our purposes is that, for a plate at small angle of a .tack, there is an 

abrupt transition from the low-speed, fully-wetted condition to the high- 

speed condition in which the plate acts as if it were semi-infinite in extent 

forward. 

Then, in the following section, we outline the computation of lift for 

the unsteady motion case. This is the analysis that always predicts insta- 

bility.  It is presumably valid for speeds above th«! transition just mentioned. 

In this paper, we still do not arrive at the point of actually predicting 

the critical speed at which instability occurs.  There are at least two dif- 

ficulties remaining,  iirstly, the transition between the fully-wetted (or 

heavily loaded) planing condition and the partially-wetted (lightly loaded) 

condition can only be predicted on the basis of a nonlinear analysis which 
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incorporates Green's solution. However, that solution is non-unique, as is 
* 

well knowa, unless gravity effects are included.  The obvious way to proceed 

is to use the analysis, including gravity effects, of Rispin (1966) and Wu 

(1967) for predicting the occurrence of the changeover, however, it is no 

small accomplishment to perform such calculations, and Rispin and Wu have not 

published any numerical results. Secondly, one must really solve the transi- 

tion problem with the oscillation superposed  to be sure that an oscillation 

with negative damping can indeed occur. For this part, it is probably valid 

to ignore the immediate effects of gravity, but the time-dependent nonlinear 

problem is formidable. 

So we satisfy ourselves for the moment with showing (1) that a linear 

analysis does predict instability at all speeds and (2) that a mechanism exists 

that invalidates the stability analysis at low speeds and thus accounts for 

the observed delay of the onset of instability. We show these two things in 

reverse order. 

♦Alternatively, three-diaensionality or finiteness of depth may be used to 
make a first approximation  unique. 

„MI ii.rWTWift'mnii r.TT iiBifeaas 
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THE NONLINEAR STEADY-MOTION PROBLEM 

If gravity be neglected, the steady-motion problem is just the "gliding 

plate" problem of Green (1936). Since this problem and its solution are 

quite well-known [See Milne-Thomson (1960), for example], we only state here 

those aspects that are required so that the subsequent discussion makes 

sense. 

The flow near the flat plate might look as shown in Figure 2.  The 

physical plane, identified as the  z plane, with z ~ x + iy , is mapped 

into three other planes, all shown in Figure 3. First is the plane of the 

complex velocity potential, F{z) = Mx,y) + iiMx,y) » where <|>(x,y)  is the 

real velocity potential. We set the value of the stream function, ^(x,y) , 

equal to zero on the stagnation streamline, which is also the downstream free 

surface. On the upstream free surface, we set \\> -  Ua, and so a is the 

[unknown] thickness of the jet (or spray sheet) far away. We also map the 

Figure 2, Nonlinear Planing Problem in the Physical Plane 

- 7 - 
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fluid region onto a hodograph plane, denoted here by w = dF/dz » u - iv, 

where u(x,y) and v(x,y) are the fluid velocity components. On the plate, 

the direction of the flow is known, of course; the image of the plate is the 

straight line, AC3 , in the w plane. On the free surface, the magnitude 

of the fluid velocity is known (since the pressure is constant there and we 

neglect gravity), and so the entire free surface maps into the semi-circle, 

AJIB . Finally, we perform a mapping onto the lower half of an auxiliary C 

plane, and the solution is usually obtained explicitly in terms of 

C = £ + in . This last mapping has introduced two more constants, b and c 

*2 

The solution of this problem is as follows: 

'<■«» - T(HT- »*& 

w(z(0)  « U e 
let r, - c 

1 - Cc + i/(l - cz) (cz - 1) 

= U e 
ia I-JC" i/(l -"?) (^  ^Tf . 

C - c 

The two expressions for w(z)  are equivalent. The solution is complete when 

F and w have been expressed in terms of z , instead of £ , and when a , 

b , and c are determined.  One accomplishes the first by using the fact 

that w(z) - dF(z)/dz .  Let 

HU) 
dF(z) Ua C ~ c 
dc     TT (b + c) C + b 

Then one can obtain z<£) explicitly: 

dF dz 
dz dc 

- w 
dz 
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1 

dt H(t) 
w(z(t)) 

ae 
-ia 

ir(b + c) -c(C - 1) + (1 + be) log £~y 

+ i/(l - c2) (C2 - l7 - ib/l - c2 log (£ + A2-  1) 

- i/(l - c2) (b2 - 1) log 
fl + b£ - /Tb2 » 1) (C2 - 1) 

K  + b 

From the form of the solution for the region far frcn the plate, it is 

easily shown that c - - cos a , where a is the angle of att-wX. We obtain 

another condition just by expressing the length of the plate in terms of the 

above formula for z (O ; this gives: 

I  - - 
TT(b 4- C) 

2c + (1 + be) log 
b - 1 
b + 1 

- ir/l - c2 (b - /b2 - 1) 

If, say, b were specified, then this relationship could be treated as an 

equation to be solved for a , the jet thickness. There is no possibility 

now of finding   b ; the solution is indeterminate unless we introduce further 

information, such as the lift or a more precise description of the behavior 

far away. 

One  can show that, as \z\ +  » in the fluid region, 

w(z) - U 
. ^ i a sin a 

7T (b + c)z 

1 

The first term obviously represents a uniform flow, and the second term 

represents an apparent vortex, of strength «2a sin a/(b + c) . Far, far 

away in the fluid region, one cannot distinguish between the planing plate 

(even with large angle of attack) and an airfoil. 

As £ -*• -b , the corresponding point in the z plane moves out in the 

jet, and so the direction of the corresponding fluid velocity gives the 

.;..<Ute.S, ia&^si3*;&«^-,-- 
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orientation of the jet. This orientation depends on the value of b .  If 

b * 1 , we find that v/u = - tan a , which means that the jet is deflected 

forward, exactly parallel to the plate. At the other extreme, if b * • , 

then v/u ■ 0 , and the jet travels exactly parallel to the x axis in the 

downstream direction; it goes over the planing plate instead of being thrown 

forward.  (This is really the case of a supercavitating hydrofoil.) 

Now consider how the solution behaves if the angle of attack, a , is 

very small. We substitute c * - cos a * - 1. + ra2 + ...  into the formula 

for w(z(U) ,  obtaining: 

w(z(0>  - 0 eict l - ia^i-r-i + 0(a2) 

I: 

(1) 

This has the familiar form for the velocity in the field of a flat-plate air- 

foil, and this relationship does not depend on the value of b  (and thus on 

whether we have a planing surface or a supercavitating hydrofoil in mind). 

However, the right-hand side is given in terms of %   ,  the variable in the 

auxiliary plane, and so we must substitute £(z)  into this relationship. 

This can be done simply and explicitly only in two limiting cases. 

For b >> 1 , one can show that 

*  4 U - DU + 3) . 

provided that  |c| << b .  When this is inverted, we obtain two solutions: 

Since we are interested in values of £ in the lower half of the £ plane, 

and since effectively z acts like £2 , it is reasonable to require that 

- 2TT < arg (z + I)   < 0  , 

The real axis from x = -t to x - +* is a branch cut, and so C(z)  is 

unambiguous if we require that 
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In this case then, the complex velocity is given approximately by: 

w(z) s u ela 1 1 - ia /l + £ - .'«] 
, A + £ 

Near z = - £ , this can be approximated by: 

w(z)  ■ U e 
ia 

1 - a U_l (z + *J 

l/u 

which shows explicitly that there appears to be a fourth-root singularity at 

the leading edge, in contrast to the usual square-root singularity at the 

leading edge of an airf 

If b - 1 -*■ 0 , the above procedure does not work, because z(K)    becomes 

singular at C " -1 .  In fact, there is even some difficulty in using the 

apparently straightforward expression for plate length, I  : 

i    = 
ff(b + c) 

2 + b - 1 - 
ba 21 b - 1 

iog F~TT + na(b " /fc2 ~ l) 

As b - 1 -► 0 , the largest term here is that involving a2  log <b - 1) , 

which gives us approximately: 

i    £ - ~ log (b - I) . 
TT 

Thus, as b - 1 •*■  0 , either a ■+ 0 or I -*- « « The former is not very in- 

teresting, and the latter is inconvenient. What must actually happen, of 

course, is that a/£ should become very small. 

It is really much more convenient at this point to define the "effective 

chord", I    , which is the distance between the trailing edge and the stagna- 

tion point. We obtain a formula for it by setting £ ■ c in the exact for- 

mula for z(£) , which then leads to the following approximation valid for 

(b - 1) « 1 : 

4a 
7ra2(l + $) 

1 + —■ , where b ■ 1 + $(a2/2) 
1 J 
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The interesting range of ß will ba 0 < 3« 1 .  (One can show, 

incidentally, that the jet moves off upward at a right angle to the plate if 

b ■ -1/c , in which case 8 « 1 .)  If we set ß - C , we have the simple 

relationship between jet thickness, a , and effective chord length: 

':■■; 

i 

I 
w 4 

Nothing is said here about the actual chord length, I   , which clearly has 

become infinite {if we insist on a non-zero value of a ). 

We now return to finding an approximate formula for fluid velocity in 

this case.  Equation (1) is awkward to use, since it indicates a square-root 

infinity at £ » -l ; this point corresponds to the actual leading edge of 

the plate, which is so far away in the physical plane that we do not really 

care about it.  However, (1) can be replaced by the following: 

w(z(c))  = U e 
id 

- ia^ I  - c 0(a2) 

* 0 
This is just as accurate as (1), since c * -1 + or/2 .  Next we can find 

z(^)  in terms of i    ,  as is appropriate for this problem: 

z  w 

Finally, we substitute this into the preceding formula for w , which gives: 

i - ia^ w(z)  * ü e (2) 
w' 

Here we have the expression that shows the equivalence of the planing problem 

to the problem of a flat-plate airfoil. 

We cannot use this relationship very close to £ = c , since the error there 
becomes very large, even if it is 0(a2) .  However, we no more expect our 
results to be accurate there than we expect ordinary thin-airfoil theory to 
give accurate answers in the vicinity of the airfoil leading edge. 

ÜÜ JMSäfeSü ; 
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The analogy between plai ing surface and airfoil was known a long time 

ago, of course. Wagner (1932) obtained the last equation above, fcVjr example. 

But Wagner really treated only the case that we here call the "lightly loaded" 

planing surface, that is, the case in which I    << I  . When the planing sur- 

face is lightly loaded, in this sense, the linear time-dependent analysis of 

our next section is presumably valid. 

The critical point for us is to determine the conditions under which it 

really is valid to treat the planing surface as lightly loaded. One cannot 

expect to find a clear, unambiguous criterion, of course.  But, for a planing 

plate at small angle of attack, we find that the demarcation may be sharper 

thda o..:a might expect.  Figure 4 shows a 2-D lift coefficient for a planing 

plate, plotted against the ratio &/£ . The lift coefficient is based on 

the effective chord, I    . For an angle of attack of 5 , the lift coeffi- 
w 

cient is constant for the entire range, I  /£ < 0.97 , which indicates that 

the value of £ is mostly of no consequence; we could keep %    constant and 

vary i    , and the lift would vary just as it does for a flat-plate airfoil 
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Figure 4. Lift coefficient as a function of wetted length/'chord length 
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of chord Ä . Even at 10 , the same statements apply if l/i <  0.90 . 

Thus it appears that there is a fairly clear boundary to the condition of 

"light loading." In particular, in the experiments of Mottard, a test would 

always start with i/l  ■ 1 , but rather abruptly the pseudo-airfoil condition 

would be attained, and this is the condition under which instability will oc- 

cur, as we show in the next section. 

Unfortunately, this analysis cannot indicate just when the change occurs. 

In fact, the indeterminateness of Green's solution does not allow us to find 

it  at all.  Shen and Ogilvie (1972) computed the wetted chord length at mid- 

span for certain planing-surface configurations, three-dimensionality pro- 

viding the information for them that was lacking in  Green's 2-D problem. 

At an angle of attack of 15  , for example, they found that a planing sur- 

face with aspect ratio 2.5 was lightly loaded at mid-spar*  when the trailing 

edge (assumed to be straight) was at about the level of the undisturbed free 

surface. For smaller aspect ratios, it was necessary for the planing surface 
* 

to rise even higher than that.  The value of i/t    varies across the span, 

and so it is not certain just when the unstable oscillation can really begin. 

Computations based on the analysis of Rispin (1966) and Wu (1967) would 

also give predictions of how the ratio £ /£ varies with the other important 

quantities, and such predictions would be much easier to evaluate than these 

of Sh2n  and Ogilvie, simply because there is no spanwise variation to worry 

about.  Of course, the 2-D results would have less relevance to Mottard's 

experiments than the high-aspect-ratio predictions of Shen and Ogilvie. 

Contrary to what one might guess intuitively, a high-aspect-ratio or 2-D 
planing surface can actually provide a considerable amount of lift even when 
its trailing edge is above the level of the undisturbed free surface. Of 
course, the flow pattern must be established first with the planing surface 
at a lower level. This phenomenon is not observable with a conventional 
low-aspect-ratio planing surface. 
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UNSTEADY MOTION 

We now formulate ar.i  solve a time-dependent planing problem under the 

following assumptions: 

1) The fiat planing plate oscillates sinusoidally in heave only. 

2) The angle of attack and the amplitude of oscillation are small 

enough that the problem can be completely linearized. 

3) The loading is light enough that the fluid velocity in the corre- 

sponding steady-motion problem is given by Equation (2). 

4) Gravity can be neglected except in that it makes the steady-motion 

solution unique. 

The free surface at infinity is deflected downward an infinite amount 

according to the nonlinear gravity-free planing theory, and so the neglect of 

gravity might appear to make impossible the formulation of a linear free- 

surface problem.  However, in a more precise statement of the problem in 

which gravity is included, there is a second length of importance,  27TU2/g , 

which is the length of gravity waves that travel at speed U .  When we 

neglect gravity, we really mean that e is very small, where e is the ratio 

of chord length to this characteristic wavelength.  In fact, the deflection of 

the free surface far from the planing surface is 0(e log c) when measured on 

the wavelength scale, and it is logarithmically large only when measured on the 

scale of the chord length. Furthermore, even on the latter scale it becomes 

larger in just about the most gradual possible way, and so the traditional pro- 

cedure for linearizing the free-surface problem appears to be reasonably safe. 

For convenience we now change the coordinate system slightly to conform 

to aerodynamics practice in unsteady-motion problems. Let the chord extend 

from x * 0 to x ~ 1 when there is no oscillation; see Figure 5. The lead- 

ing edge is defined as in the previous section:  it is the location of die 

stagnation point.  (We assume that the nonlinear steady-motion problem has been 

solved and that t    - 1 .) The trailing edge is a clearly defined sharp edge, 
w 

which we assume to be located at  (l,d) during steady motion, Since the 

planing surface has an angle of attack, a , the coordinates of the leading 

edge are  (0,a + d) . The free surface is described by y ■ Y (x) in the 
o 

- 16 - 
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instantaneous 
steady (moan) 

Figure 5. Coordinates for the unsteady-motion problem 

absence of oscillation. 

Let h(t) be the heave displacement.  In general, the equation of the 

planing surface is then: 

y *  (I - x)a +■ d + h(t) , -  *> < x < 1 . 

A» noted, we assume that the plate extends indefinitely far forward, but we 

are interested only in that part between stagnation point and trailing edge. 

Let x ■ a(t) denote the position of the effective leading edge. Then we 

consider that the fluid region is bounded by the planing surface for 

a(t) < x < 1 and by the free surface for x < a(t) and for 1 < x .  If we 

define the free surface by the statement, y * Y(x,t) , it is evident that 

Y(a(t),t) -  (l - a(t)) a + d + h(t) ; (3) 

■^«**.Ts-:s-l.*-'•■ 
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this condition ultimately determines the unknown variable, a(t) .  In the 

steady motion problem, we note that the corresponding condition is: 

YQ(0)  = a + d . (4) 

Let the complete velocity potential be expressed: 

Ux + <Mx,y,t)  - Re(\Jz  + f (z,t)) , 

where z ■ x + iy .  The boundary conditions for the linearized $ problem 

are as follows: 

$  = -aU +■ h(t)  on y -  0 ,  a(t) < x < 1 ; 

U$ + <J>^_ ■ 0 on y = 0 , x < a(t)  and x > 1 ; 

(5) 

(6) 

uy + y^ 
X    t 

on 0 , x < a (t)  and x > 1 . (7) 

Equation (5) is the usual kinematic boundary condition on the planing surface. 

Equations (6) and (7) are, respectively, the dynamic and kinematic conditions 

on the free surface. 

We shall presently require that a(t)  be small, in a certain sense. 

However, it would be disastrous to assume that a{t)  could be considered 

small enough so that the break in the fluid boundary might be placed approxi- 

mately at x ■ 0 instead of at x « a in the linearized problem.  In the 

steady-motion problem, we certainly expect to find a square-root infinity in 

the velocity at the leading edge, as indicated in Equation (2). There is no 

reason to assume that such a singularity will be reduced in severity in the 

unsteady-iüotion problem, and so there will be just such a singularity present, 

but it will be moving fore and aft.     If we try to represent the flow associated 

with such a moving singularity in terms of fixed singularities at the mean 

position, we encounter higher-order singularities, presumably 3/2-root 

infinities.  Such nonintegrable singularities are compl€tely unacceptable, and 

so we must avoid them by placing the leading edge at its instantaneous 
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position — at least, until we have partially solved the problem. 

Equation (6) is a degenerate wave equation which admit" \" solutions 

representing arbitrary, nondispersive waves traveling in the positive x 

direction; its general solution is any function of the single variable 

(x - Ut) . We may suppose that, if we go far enough upstream, there is no 

disturbance at all, and so <b - Q    on the free surface at infinity upstream. 

The only function of  (x - Ut) which has this property is the trivial one, 

that is, $(x,0,t) • 0 on y = 0 for all x < a(t) .  This implies further 

that: 

<Mx,-y,t) = -<Hx.y,t) , (8) 

which permits the analytic continuation of +(x,y,t)  into the entire plane. 

However,  <$> « 0 on y * 0 only  on the upstream side of the leading edge, in 

general, and so we must make a branch cut along y ■ 0 from x = a(t)  to 

x - « , along both sides of which Equation (6) must be satisfied. 

Except for the variability of a(t) , the above problem is now readily 

identified as a standard problem of aerodynamics:  We seek a velocity potential 

satisfying a typical wing boundary condition, (5); there is no upstream dis- 

turbance; the condition (6), when applied downstream, is equivalent to :s- 

quiring no pressure jump across a vortex sheet.  The analytic continuation 

requires that $  be an even function of y , and so there is a condition 

identical to {5} applied on the upper  side of the x axis, as well as on the 

lower side; thus the equivalent airfoil has zero thickness. We may expect to 

be able to obtain a solution in the manner of, say, Von Karman and Sears 

(1938), after which Conditions (3) and (7) should allow us to find a(t). 

Solution of the aerodynamics problem.     It is convenient to write the 

solution in the complex forrr■• 

f(z,t)  - — f 2tri Y(i,c) log (i-j-5} d£ , 

'a(t) 

(9) 

where we take the argument of £ and of  (£ - z)  both in the range between 

-irr and +7T . For a(t) < x < 1 , let 

**—mmm 
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y{x,t) = YQ(x,t) + Y (x,t) , 

where 

Y0(x,t)     ■ 

00 

Y  (x,t)    ■ . x J x-x     IJ«-a(t) 
fix- a(t)      J J    £~ 1 

Y(C,t)   d£ 
C - x 

1 

For any  function, y(x,t)  in 1 < x < • , the ibove solution satisfies the 

body condition, Equation (5).  In the corresponding aerodynamics problem, 

Y (x,t)  is the vorticity induced on the airfoil by the downstream field of 
I 

vorticity. 

The downstream dynamic condition, Equation (6), is satisfied if we 

require only that 

x --l-i 
Y(x,t) « y(l+#t - ^—)    for x>l. (10) 

Since our problem is formally identical to an aerodynamics problem, we can 

use the usual aerodynamic argument about conservation of vorticity to derive 

a condition on Y just behind the trailing edge: 

,1 

uY(i+,t) = - 
dt YU,0 <U 

a(t) 

The previous expressions Tor Y<x,t) in    a(t) < x < 1 can be used in the 

last equation, and this gives; 

UyU+rt)     -    »irEl - a(t)jK(t)   + va(t)[-aU + h(t)] 

fac(Tt«.t)(1|'Sf^-xj-ir«.t,  —M 
\    ( t      if  *   x       J    * /(^ : ins . 

(11) 

(C - a(t)) 

At this point, we know Y(x#t) for x > 1 in terms of y(l+ft) , and we 

know Yd+#t) as i functional of Y(x,t) for x > 1 . In addition, the 

quantity a(t)  remains unknown. A further simplification is needed. 

!MW"»P 
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The second linearization.    The linearization of the problem required 

that a , h(t) , and a(t) be small quantities. The results, as given in 

the last paragraphs, are decidedly nonlinear, however. Yet, since we are 

analyzing the stability of the steady motion of the planing surface, it is 

consistent with the usual approach to perturbation problems to assume that all 

disturbances are small enough that only linear combinations of small quantities 

occur. 

The basic small parameter is a , the angle of attack. As the planing 

surface heaves an amount h , the location of the forward edge moves a dis- 

tance which is of the order of magnitude of h/a , that is, h = 0(aa) » 

Therefore we require that h = o(ct) , which implies that a ■ o(l) . 

The function y(x,t)  is also small. Neglecting all quantities which 

are o{h) or smaller, we have the following approximation of Equation (11): 

00 

UY(l+,t) * -7Th(t) - vaUa(t) -  d£ Yt<5,t) ^£—"1 - l] •    U2) 

We could now substitute into the integrand from Equation (10), and we would 

then have a linear integral equation to be solved for y(l+,t) . Tnat equa- 

tion can in fact be solved if a Fourier transform operator is applied to it. 

We do what .is essentially equivalent; We assume that the motion is sinusoidal 

in time, so that we have to find only the complex amplitude of y ■ Thus, 

let: 

icöt 
h(t) h e 

o 

a(t)  « a e 
o 

i(wt - E) 

Y(x.t) - 
iu(t - x/U) 

9 e r 1 < X < » 

The constants h  and a  are real, whereas g is generally complex. Now, 

in place of Equation (12), we have the following; 

U g e 
-iw/U 9 . -IE 

7Tü/h    - TriUüxxa e        - iwg f« --1*" [VS -»] 
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We solve this equation for    g  : 

g    *    - 4irUe 
iv )       o      2      o 

/ K   (iv)  + K (iv) i    o i 
(13) 

where v ■ w/2U and K-  is a modified Bessel function of the second kind. 

Since the arguments of the Bessel functions are purely imaginary, the func- 

tions could be rewritten in terms of Hankel functions of real argument, but 

we follow here the conventions of aerodynamics. Now y(x,t)  is known every- 

where downstream, except that it is expressed in terms of a  and e , both 

of which remain to be determined. 

Determination of    a(t)   . We must now compute the free surface shape, 

Y(x,t) , upstream of the planing surface (still in terms of the unknown a(t)) 

and then choose a(t)  so that Equation (3) is satisfied.  In order to do this, 

we use Equation (7), which is an inhomogeneous wave equation.  Its general 

solution is: 

Y(x,t)  = Y(xo,t - (x - x0)/u) + ~ 
,x 
4y(x\0,T) dx' , (14) 

where T ■ t - (x - x')/U , and x0 is any number such that XQ < x , From 

the form of the solution as given in (9), along with everything that we have 

derived since, we can express the integrand above: 

,{X,0,T)  - - 
2IT J     5 - x 

a(i) 

- (-au + n(T))li - V rr*— ^        * \ f a (T ) - x 

. JL qe
iwt jzmz [ JX 

27T ge   !a(T) - x  1 C - 1 
e-iMS/0 V 

4-x 

This must now be substituted into the integral in Equation (14); we do not 

*HL, :..>*■, ...   „ _ .^.^iuÜi. 
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bother writing out the result at this point however. 

In the formula for Y(x,t) above, we would like to let xQ *» -« , 

since there is presumably no disturbance far upstream. However, the ex- 

pression for Y(x,t)  includes the steady part of the deflection of the free 

surface, and we know that that is not a well-behaved quantity far upstream? 

it becomes logarithmically large with increasing distance.  In order to be 

able to proceed, we subtract off the troublesome part. Thus, for steady 

motion, we have the following relationships: 

? 

$y(x,0,l)      ■     -  CtU ■TF? -« <  x <  0   ; 

x 

Y(x,t)     -     Yo(x)      =     Yo{XO)+0"f     ♦v<*,*°r*)   <**' 
*0 

X 

-    Y0(x0)   - a J     jl - Ip^jf- dx*   . 

We can evaluate YQ{xo) by substituting the last results into Equation (4), 

obtaining: 

In the unsteady-motion problem, we now assume that the displacement of the free 

surface far upstream is equal to the displacement in the steady-motion problem, 

i.e., that Y(x ,t) - YQ (x ) •* 0 as x ■+ -■«■ . We are explicitly assuming 

that the unsteady  component of surface displacement vanishes upstream, even in 

the absence of gravity.  Now we substitute YQ(x0)  for Y(x ,t)  in Equation 

We do not prove this statement. However, if it were not true, one would not 
expect the following steps to lead to finite results. In fact, the analysis 
does lead to undefined results if the frequency of oscillation approaches zero. 
This outcome supports  the assumption, since it is necessary  for the frequency 
to approach zero before the results become meaningless. 
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(14), at the same time letting XQ •*• -<■> . Finally, we substitute everything 

into Equation (3). This gives the equation to be solved for a(t) : 

a  U - a(t)]  + d + h(t) 

0 /     0   a(t) 

«    a + d + a lim     \   |      1 - Ji-=-^j  dx -  | [l - %«—f^ 
**-i x l  * ~xJ    L [     (t)" 

dx 

1 "   d,fi(t + ^f1.^IZ£ 

iojt 

2ITU    J K     -X    J      *£ 
LU[ jzr; 

-x     I      ?£  -  I 
1 

-i«£/U 

Note that g depends explicitly on aQ and e , as given in Equation (13). 

A large amount of rather tedious algebra leids to the following simplifi- 

cation of this equation: 

v 

-   1 iv. ex a(t) (l - je1VKo(iv) + i   d^ex\{±o) 

C 

- ive1V h(t)(K (iv) ■* K0(iv)) 

. %L 
iü)t 

2TTU 

00 «■ 

[   dxe-2iux[2-tAE [i^i] . x] 
I, I   *       I* + iJ      J 

Tf ~2iv 
+ 26 6(v) + 

W1V 

where E(x) is the complete elliptic integral of the second kind, and 5(v) 

is the Dirac delta function.  In this form, it is obvious that the results 

are invalid for zero frequency. However, for finite frequency we can simply 

omit the delta function, and the result has unambiguous meaning. 

_*iw„ -^ ._-■ -^.ViUt.-^  - ___^i^ L2,    - . W ^....«.L^ 



ntaensFviarwsemf TttMMTWMwiiwwswMm^^ 

- 25 - 

The solution of this equation for a(t)  is simple in principle, 

although computation of the answer is clearly not simple. When a(t) has 

thus been found, all ether flow variables can be computed from formulas 

given previously. 
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THE DAMPING FORCE 

The lift force can be computed by any of several methods. In any case, 

the result can be expressed as follows: 

L(t) » 7TpU2a + Re . [A (v) + iA (v)] e 
11       2 

iwt 

where 

A] (v) + iA2(v) = - TrpU* { ivh^ jiv + 
2^ (iv) 

Viv) + ^(ivjj 

,    -ie 1 ,       Kl(iv) 
+ aaQe   |iv + 

l^dv) -f Kx(iv)J 

(We have not previously bothered to denote just the real parts, but now it is 

essential to do this.) 

In order to determine whether the damping is positive or negative, we 

must relate the phase of the time dependent part of L(t) to the phase of 

h{t) . Recall that 

h(t) = Re  |h0e 
iu)t 

= hQ cos cot . 

Then we have also that 

h(t) ■ - wh0 sin tot . 

We substitute these back into the lift formula; 

A (v)       AJv) m 

L « trpu2a + —-—h(t) +  \  h(t) 
ho        who 

If A9(v) < 0 , the damping is positive, and so the oscillation is stable. 

feüS^L^-l.^ Sit-,_ .-.. ...^Ul /XS:■-.^.■JM .--, 
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We calculated the lift in the manner described above, and we found that 

the damping is negative if v < 0.213 . We have now come back to the situation 

described in the Introduction: This analysis predicts instability at any speed, 

for, if U and I    are given, the planing plate experiences negative damping 

at any w < (2U/£)# (0.213) (since v = iai/2b  ).  The existence of a minimum 

speed at which the instability occurs must be predicted on the basis of a 

nonlinear planing theory, in the manner of Green (1936), but with gravity 

included, as worked out by Rispin (1966) and Wu (1967). 
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